MATHEMATICS APPLICATIONS

MAWA Semester 1 (Unit 3) Examination 2018

Calculator-Assumed

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 8 of term 2, 2018

Section Two: Calculator-assumed

(100 Marks)

Solution

As population increases so does the number of people migrating overseas	
Marking key/mathematical behaviours	Marks
describes the association	1

Question 7 (b)

Solution

It is possible but unlikely as an increase in population does not cause migration. Association does not guarantee causality.

Marking key/mathematical behaviours	Marks
concludes correctly	1
explains role of causality	1

Question 7 (c)

Solution

Confounding – both of these variables are influenced by / associated with another variable which has a similar effect on both of these variables.

These two variables may be responding to the current population with each state.

Marking key/mathematical behaviours	Marks
explains confounding	1
identifies another variable	1

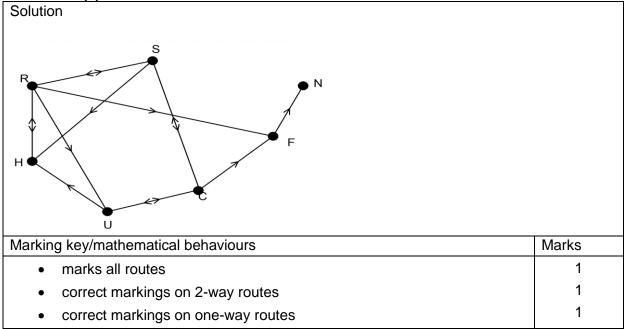
Question 8 (a)

Solution	
$L_1 = 10, L_{n+1} = L_n + 0.4$	
Marking key/mathematical behaviours	Marks
determines recurrence growth	1
identifies first term	1

Question 8 (b)

Solution	
$20 = 10 + 25 \times 0.4$ So at the end of the 26^{th} week	
Marking key/mathematical behaviours	Marks
determines equation to solve / lists terms of the sequence	1
determines term number	1

٦


Question 8 (c)

Solution		
Klind. Growth is at 0.8 km per week but in Fland it is 0.4 km per week		
Marking key/mathematical behaviours	Marks	
identifies sequence with fastest rate	1	
explains conclusion	1	

Question 8 (d)

Solution	
$4 + 0.8n = 9.6 + 0.4 n \rightarrow n = 14$	
OR	
10 10.4 10.8 11.2 11.6 12.0 12.4 12.8 13.2 13.6 14.0 14.4 14.8 15.2	
4.8 5.6 6.4 7.2 8.0 8.8 9.6 10.4 11.2 12.0 12.8 13.6 14.4 15.2	
Marking key/mathematical behaviours	Marks
determines term number	1
justifies conclusion	1

Question 9 (a)

Question 9 (b)

Solution	
NF is a bridge – without it the netball centre is not connected	
Marking key/mathematical behaviours	Marks
identifies bridge	1
explains selection	1

Question 9 (c)

Solution	
Yes – because it can be drawn without paths crossing	
Marking key/mathematical behaviours	Marks
correctly concludes	1
explains conclusions	1

Question 10 (a)

Solution	
Positive, strong, linear	
Marking key/mathematical behaviours	Marks
describes relationship as strong	1
 describes relationship as approaching linear 	1
 describes relationship as positive 	1

Question 10 (b)

Solution	
response	
Marking key/mathematical behaviours	Marks
identifies response variable	1

Question 10 (c)(i)(ii)

Solution	
WBGT = 0.62 x AT + 6.15	
r=0.9258	
Marking key/mathematical behaviours	Marks
 identifies gradient and intercept 	1
 expresses relationship as linear with correct variables 	1
 identifies correlation coefficient 	1

Question 10 (d)

Solution	
0.62 x 25 + 6.15 = 21.7	
Marking key/mathematical behaviours	Marks
uses relationship to predict temperature	1

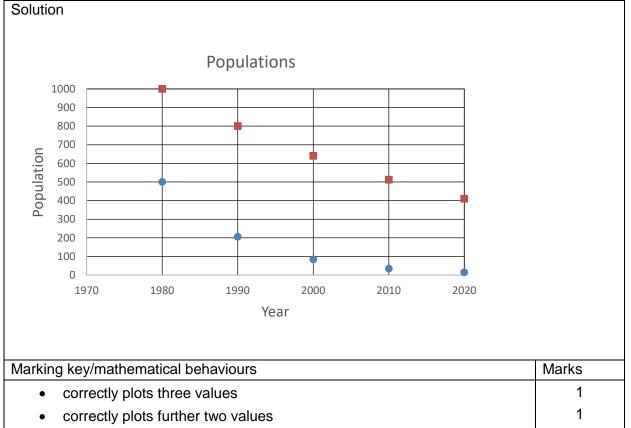
Question 10 (e)

Solution	
Fairly reliable	
- correlation coefficient is close to 1	
- uses interpolation	
Marking key/mathematical behaviours	Marks
Marking key/mathematical behaviours concludes correctly 	Marks 1
	Marks 1 1

Question 10 (f)

Solution	
(i) smaller(ii) smaller	
Marking key/mathematical behaviours	Marks
selects best option for change in correlation coefficient	1
selects best option for change in gradient	1

Question 11 (a)


Solution	
Decreasing exponential	
Marking key/mathematical behaviours	Marks
identifies decreasing	1
identifies type of decreasing	1

Question 11 (b)

Solution						
Year	1980	1990	2000	2010	20	020
Population	1000	800	640	512	4	10
Marking key/mathematical behaviours				Marks		
enters 3 correct values					1	
• enters	a further 2 c	orrect values				1

MATHEMATICS APPLICATIONS SEMESTER 1 (UNIT 3) EXAMINATION

Question 11 (c)

Question 11 (d)

Solution	
<i>n</i> = 18 so 2160	
Marking key/mathematical behaviours	Marks
determines which term	1
states value of term	1
Question 11 (e)	
Solution	
(i) rhinos	

(ii) rhinos	
(iii) both	
Marking key/mathematical behaviours	Marks
identifies faster rate	1
identifies difference in terms	1
identifies geometric sequences	1

Question 12 (a)

Solu	tion					
(i) T (ii)	hey can all be drawn in t	he plane without any e	edges crossing			
	Number of vertices	Number of edges	Number of faces	v +	f - e	
	(<i>v</i>)	(<i>e</i>)	(<i>f</i>)		•	
	5	4	1	:	2	
	5	5	2		2	
	5	5	2		2	
	5	6	3		2	
	5	7	4	:	2	
	5	8	5		2	
Mark	king key/mathematical be	haviours			Marks	
describes planarity					1	
 completes first column with given data 					1	
completes last column					1	
 determines number of edges in each graph 					1	
 determines number of internal faces 					1	
 includes external faces 					1	
		50				

Question 12 (b)

Solution (i) multiple edges from W to G OR M to G (ii) G (iii) G G G G G G G G G G G G G	
Marking key/mathematical behaviours	Marks
 identifies multiple edges between two nodes 	1
 identifies vertex with highest degree 	1
 redrawn with same number of vertices 	1
 redrawn with same number of edges 	1
 redrawn so no edges cross 	1
, , , , , , , , , , , , , , , , , , ,	

Question 13 (a)

Solution	
420	
Marking key/mathematical behaviours	Marks
determines total in column / row	1

Question 13 (b)

Solution	
Dog ownership gender	
Marking key/mathematical behaviours	Marks
 identifies one categorical variable 	1

Question 13 (c)

Solution	
35% 15% 50%	
Marking key/mathematical behaviours	Marks
determines correct percentages	1
rounds to the nearest integer	1

Question 13 (d)

nd this was
nd this was
Marks
1
1

Question 13 (a)

Question 13 (e)	
Solution	
Comparisons can only be made when the values are comparable eg percentages	
Cannot compare the numbers when the totals are different	
Marking key/mathematical behaviours	Marks
describes ability to compare values	1

Question 14 (a)

Solution	
arithmetic	
Marking key/mathematical behaviours	Marks
identifies pattern in arithmetic sequence	1

Question 14 (b)

Solution

$A_n = 12 + (n-1) \times 1.4$	
Marking key/mathematical behaviours	Marks
 identifies starting value and increasing amount 	1
determines an expression to show arithmetic sequence	1

Question 14 (c)

Solution	
$A_{10} = 12 + (9) \times 1.4 = 24.6$	
Marking key/mathematical behaviours	Marks
substitutes into rule	1
determines 10 th term	1

Question 14 (d)

Solution	
$B_{n+1} = \frac{4.6}{4} B_n OR B_{n+1} = 1.15 B_n$	
Marking key/mathematical behaviours	Marks
determines recurrence relation	1

Question 14 (e)

Solution		
Using table function on CAS, sequence = 98.8 when $n = 63$ and 100.2 when $n = 64$ So $n =$		
64		
Marking key/mathematical behaviours	Marks	
 provides evidence of attempt to solve equation 	1	
• presents <i>n</i> as an integer	1	

Question 14 (f)

B is increasing faster than A. At $n = 16$, A is 33 and B is 32.548. This is as close as they get		
Marking key/mathematical behaviours	Marks	
identifies term number 16	1	

• justifies by providing values or list of values

1

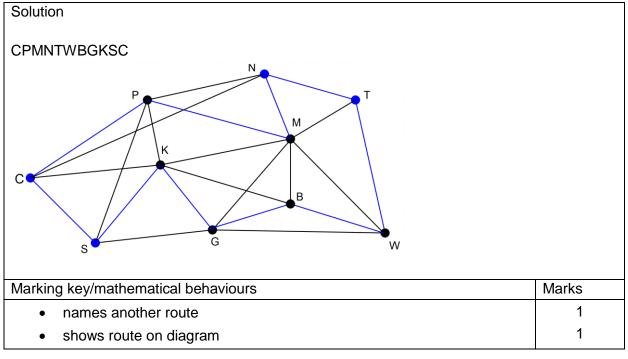
Question 15 (a)

Question 15 (b)

Solution	
No. Vertex C is not linked to G	
Marking key/mathematical behaviours	Marks
determines correct conclusion	1
justifies conclusion	1

Question 15 (c)

Solution	
Starts and ends at the same vertex	
No repeated edges	
No repeated vertices	
Marking key/mathematical behaviours	Marks
identifies first reason	1
 identifies second reason 	1
 identifies third reason 	1


Question 15 (d)

Solution	
Hamiltonian	
Marking key/mathematical behaviours	Marks
identifies cycle is Hamiltonian	1

Question 15 (e)

Solution	
10 (edges)	
Marking key/mathematical behaviours	Marks
identifies length of cycle	1

Question 15 (f)

Question 16 (a)

Solution				
No edges are repeated				
Starts and finishes at different vertices				
Marking key/mathematical behaviours	Marks			
identifies feature of trail	1			
 identifies feature of being open 	1			

Question 16 (b)

Solution	
QHYQGPRHBRZBGZ	
Marking key/mathematical behaviours	Marks
 starts and finishes at an odd vertex 	1
all edges covered once only	1
all destinations visited	1

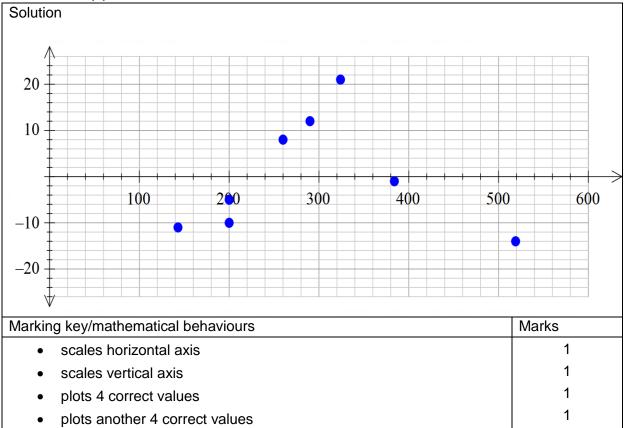
Question 16 (c)

Solution					
Semi- eulerian					
It has a open trail – every edge is included and the trail finishes at a vertex other than the					
starting vertex					
Marking key/mathematical behaviours	Marks				
concludes graph is semi-eulerian	1				
identifies open	1				
identifies trail	1				

Question 16 (d)

Solution			
Vertex must have an even degree			
Marking key/mathematical behaviours Ma			
identifies conditions for an additional vertex	1		

Question 17 (a)


Solution	
99.27	
Marking key/mathematical behaviours	Marks
interprets the coefficient of determination	1

Question 17 (b)

Solution								
Residuals	-11	-10	-5	8	12	21	-1	-14
Marking key/mathematical behaviours						Marks		
uses cost – predicted cost					1			
determines residuals					1			

MATHEMATICS APPLICATIONS SEMESTER 1 (UNIT 3) EXAMINATION

Question 17 (c)

Question 17 (d)

Solution				
Residuals are randomly scattered around the x-axis				
Marking key/mathematical behaviours	Marks			
identifies condition for linear relationship	1			